
h – Operations Research h03abc

nag transport (h03abc)

1. Purpose

nag transport solves the classical transportation (‘Hitchcock’) problem.

2. Specification

#include <nag.h>
#include <nagh03.h>

void nag_transport(double cost[], Integer tdcost, double avail[],
Integer navail, double req[], Integer nreq, Integer maxit,
Integer *numit, double optq[], Integer source[],
Integer dest[], double *optcost, double unitcost[],
NagError *fail)

3. Description

nag transport solves the transportation problem by minimizing

z =
ma∑

i

mb∑

j

cijxij .

subject to the constraints
mb∑

j

xij = Ai (availabilities)

ma∑

i

xij = Bj (requirements)

where the xij can be interpreted as quantities of goods sent from source i to destination j, for
i = 1, 2, . . . , ma; j = 1, 2, . . . , mb, at a cost of cij per unit, and it is assumed that

∑ma

i Ai =
∑mb

j Bj

and xij ≥ 0.

nag transport uses the ‘stepping stone’ method, modified to accept degenerate cases.

4. Parameters

cost[nreq][tdcost]
Input: cost[i − 1][j − 1] contains the coefficients cij , for i = 1, 2, . . . , ma; j = 1, 2, . . . , mb.

tdcost
Input: the second dimension of the array cost as declared in the function from which
nag transport is called.
Constraint: tdcost ≥ nreq.

avail[navail]
Input: avail[i − 1] must be set to the availabilities Ai, for i = 1, 2, . . . , ma;

navail
Input: the number of sources, ma.
Constraint: navail ≥ 1.

req[nreq]
Input: req[j − 1] must be set to the requirements Bj , for j = 1, 2, . . . , mb.

nreq
Input: the number of destinations, mb.
Constraint: nreq ≥ 1.

maxit
Input: the maximum number of iterations allowed.
Constraint: maxit ≥ 1.

[NP3275/5/pdf] 3.h03abc.1



nag transport NAG C Library Manual

numit
Output: the number of iterations performed.

optq[navail+nreq]
Output: optq[k− 1], for k = 1, 2, . . . , ma + mb − 1, contains the optimal quantities xij which,
when sent from source i = source[k − 1] to destination j = dest[k − 1], minimize z.

source[navail+nreq]
Output: source[k−1], for k = 1, 2, . . . , ma +mb−1, contains the source indices of the optimal
solution (see optq above).

dest[navail+nreq]
Output: dest[k − 1], for k = 1, 2, . . . , ma + mb − 1, contains the destination indices of the
optimal solution (see optq above).

optcost
Output: the value of the minimized total cost.

unitcost[navail+nreq]
Output: unitcost[k − 1], for k = 1, 2, . . . , ma + mb − 1, contains the unit cost cij associated
with the route from source i = source[k − 1] to destination j = dest[k − 1].

fail
The NAG error parameter, see the Essential Introduction to the NAG C Library.

5. Error Indications and Warnings

NE INT ARG LT
On entry, navail must not be less than 1: navail = 〈value〉.
On entry, nreq must not be less than 1: nreq = 〈value〉.
On entry, maxit must not be less than 1: maxit = 〈value〉.

NE 2 INT ARG LT
On entry tdcost = 〈value〉while nreq = 〈value〉. These parameters must satisfy tdcost ≥ nreq.

NE REQ AVAIL
The relative difference between the sum of availabilities and the sum of requirements is greater
than machine precision.
relative difference = 〈value〉, machine precision = 〈value〉

NE TOO MANY
Too many iterations (〈value〉)

NE ALLOC FAIL
Memory allocation failed.

6. Further Comments

An a priori estimate of the run time for a particular problem is difficult to obtain.

6.1. Accuracy

The computations are stable.

6.2. References

Hadley, G. (1962) Linear Programming Addison-Wesley, New York.

7. See Also

None.

3.h03abc.2 [NP3275/5/pdf]



h – Operations Research h03abc

8. Example

A company has three warehouses and three stores. The warehouses have a surplus of 12 units of a
given commodity divided between them as follows:

Warehouse Surplus
1 1
2 5
3 6

The stores altogether need 12 units of commodity, with the following requirements:

Store Requirement
1 4
2 4
3 4

Costs of shipping one unit of the commodity from warehouse i to store j are displayed in the
following matrix:

Store
1 2 3

1 8 8 11
Warehouse 2 5 8 14

3 4 3 10

It is required to find the units of commodity to be moved from the warehouses to the stores, such
that the transportation costs are minimized. The maximum number of iterations allowed is 200.

8.1. Program Text

/* nag_transport(h03abc) Example Program.
*
* Copyright 1992 Numerical Algorithms Group.
*
* Mark 3, 1992.
*
*/

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nagh03.h>

#define NAVAIL 3
#define NREQ 3
#define M NAVAIL+NREQ
#define TDCOST 5

main()
{

double cost[NAVAIL][TDCOST];
double avail[NAVAIL], req[NREQ], optq[M];
Integer source[M], dest[M];
double unitcost[M];
Integer tdcost, navail, nreq, m;
Integer maxit, numit;
double optcost;
Integer i;
static NagError fail;

Vprintf("h03abc Example Program Results\n");
tdcost = TDCOST;
navail = NAVAIL;
nreq = NREQ;
m = M;

cost[0][0] = 8.0;

[NP3275/5/pdf] 3.h03abc.3



nag transport NAG C Library Manual

cost[0][1] = 8.0;
cost[0][2] = 11.0;
cost[1][0] = 5.0;
cost[1][1] = 8.0;
cost[1][2] = 14.0;
cost[2][0] = 4.0;
cost[2][1] = 3.0;
cost[2][2] = 10.0;

avail[0] = 1.0;
avail[1] = 5.0;
avail[2] = 6.0;

req[0] = 4.0;
req[1] = 4.0;
req[2] = 4.0;

maxit = 200;

h03abc((double *)cost, tdcost, avail, navail, req, nreq, maxit, &numit,
optq, source, dest, &optcost, unitcost, &fail);

Vprintf("\nGoods From To Number Cost per Unit\n");
for (i=0; i < m-1; i++)

Vprintf(" %ld %ld %8.3f %8.3f\n",
source[i], dest[i], optq[i], unitcost[i]);

Vprintf("\nTotal Cost %8.4f\n", optcost);
exit(EXIT_SUCCESS);

}

8.2. Program Data

None.

8.3. Program Results

h03abc Example Program Results

Goods From To Number Cost per Unit
3 2 4.000 3.000
3 3 2.000 10.000
2 3 1.000 14.000
1 3 1.000 11.000
2 1 4.000 5.000

Total Cost 77.0000

3.h03abc.4 [NP3275/5/pdf]


